\(\int (a+a \sec (c+d x))^{4/3} (A+C \sec ^2(c+d x)) \, dx\) [299]

   Optimal result
   Rubi [A] (warning: unable to verify)
   Mathematica [F]
   Maple [F]
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 815 \[ \int (a+a \sec (c+d x))^{4/3} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {3 a C \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)}{7 d}+\frac {3 \sqrt {2} a A \operatorname {AppellF1}\left (\frac {11}{6},\frac {1}{2},1,\frac {17}{6},\frac {1}{2} (1+\sec (c+d x)),1+\sec (c+d x)\right ) (1+\sec (c+d x)) \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)}{11 d \sqrt {1-\sec (c+d x)}}+\frac {3 C (a+a \sec (c+d x))^{4/3} \tan (c+d x)}{7 d}-\frac {15 \left (1+\sqrt {3}\right ) a C \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)}{7 d (1+\sec (c+d x))^{2/3} \left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )}+\frac {15 \sqrt [3]{2} \sqrt [4]{3} a C E\left (\arccos \left (\frac {\sqrt [3]{2}-\left (1-\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}{\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right ) \sqrt [3]{a+a \sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right ) \sqrt {\frac {2^{2/3}+\sqrt [3]{2} \sqrt [3]{1+\sec (c+d x)}+(1+\sec (c+d x))^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}} \tan (c+d x)}{7 d (1-\sec (c+d x)) (1+\sec (c+d x))^{2/3} \sqrt {-\frac {\sqrt [3]{1+\sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}}}+\frac {5\ 3^{3/4} \left (1-\sqrt {3}\right ) a C \operatorname {EllipticF}\left (\arccos \left (\frac {\sqrt [3]{2}-\left (1-\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}{\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right ) \sqrt [3]{a+a \sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right ) \sqrt {\frac {2^{2/3}+\sqrt [3]{2} \sqrt [3]{1+\sec (c+d x)}+(1+\sec (c+d x))^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}} \tan (c+d x)}{7\ 2^{2/3} d (1-\sec (c+d x)) (1+\sec (c+d x))^{2/3} \sqrt {-\frac {\sqrt [3]{1+\sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}}} \]

[Out]

3/7*a*C*(a+a*sec(d*x+c))^(1/3)*tan(d*x+c)/d+3/7*C*(a+a*sec(d*x+c))^(4/3)*tan(d*x+c)/d-15/7*a*C*(a+a*sec(d*x+c)
)^(1/3)*(1+3^(1/2))*tan(d*x+c)/d/(1+sec(d*x+c))^(2/3)/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))+3/11*a*A*Appe
llF1(11/6,1,1/2,17/6,1+sec(d*x+c),1/2+1/2*sec(d*x+c))*(1+sec(d*x+c))*(a+a*sec(d*x+c))^(1/3)*2^(1/2)*tan(d*x+c)
/d/(1-sec(d*x+c))^(1/2)+15/7*2^(1/3)*3^(1/4)*a*C*((2^(1/3)-(1+sec(d*x+c))^(1/3)*(1-3^(1/2)))^2/(2^(1/3)-(1+sec
(d*x+c))^(1/3)*(1+3^(1/2)))^2)^(1/2)/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1-3^(1/2)))*(2^(1/3)-(1+sec(d*x+c))^(1/3)*
(1+3^(1/2)))*EllipticE((1-(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1-3^(1/2)))^2/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2
)))^2)^(1/2),1/4*6^(1/2)+1/4*2^(1/2))*(a+a*sec(d*x+c))^(1/3)*(2^(1/3)-(1+sec(d*x+c))^(1/3))*((2^(2/3)+2^(1/3)*
(1+sec(d*x+c))^(1/3)+(1+sec(d*x+c))^(2/3))/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))^2)^(1/2)*tan(d*x+c)/d/(1
-sec(d*x+c))/(1+sec(d*x+c))^(2/3)/(-(1+sec(d*x+c))^(1/3)*(2^(1/3)-(1+sec(d*x+c))^(1/3))/(2^(1/3)-(1+sec(d*x+c)
)^(1/3)*(1+3^(1/2)))^2)^(1/2)+5/14*3^(3/4)*a*C*((2^(1/3)-(1+sec(d*x+c))^(1/3)*(1-3^(1/2)))^2/(2^(1/3)-(1+sec(d
*x+c))^(1/3)*(1+3^(1/2)))^2)^(1/2)/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1-3^(1/2)))*(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1
+3^(1/2)))*EllipticF((1-(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1-3^(1/2)))^2/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2))
)^2)^(1/2),1/4*6^(1/2)+1/4*2^(1/2))*(a+a*sec(d*x+c))^(1/3)*(2^(1/3)-(1+sec(d*x+c))^(1/3))*(1-3^(1/2))*((2^(2/3
)+2^(1/3)*(1+sec(d*x+c))^(1/3)+(1+sec(d*x+c))^(2/3))/(2^(1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))^2)^(1/2)*tan(d
*x+c)*2^(1/3)/d/(1-sec(d*x+c))/(1+sec(d*x+c))^(2/3)/(-(1+sec(d*x+c))^(1/3)*(2^(1/3)-(1+sec(d*x+c))^(1/3))/(2^(
1/3)-(1+sec(d*x+c))^(1/3)*(1+3^(1/2)))^2)^(1/2)

Rubi [A] (warning: unable to verify)

Time = 1.24 (sec) , antiderivative size = 815, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.444, Rules used = {4140, 4009, 3864, 3863, 141, 3913, 3912, 52, 65, 314, 231, 1895} \[ \int (a+a \sec (c+d x))^{4/3} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {3 C \tan (c+d x) (\sec (c+d x) a+a)^{4/3}}{7 d}+\frac {3 \sqrt {2} a A \operatorname {AppellF1}\left (\frac {11}{6},\frac {1}{2},1,\frac {17}{6},\frac {1}{2} (\sec (c+d x)+1),\sec (c+d x)+1\right ) (\sec (c+d x)+1) \tan (c+d x) \sqrt [3]{\sec (c+d x) a+a}}{11 d \sqrt {1-\sec (c+d x)}}+\frac {15 \sqrt [3]{2} \sqrt [4]{3} a C E\left (\arccos \left (\frac {\sqrt [3]{2}-\left (1-\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}}{\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right ) \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right ) \sqrt {\frac {(\sec (c+d x)+1)^{2/3}+\sqrt [3]{2} \sqrt [3]{\sec (c+d x)+1}+2^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}} \tan (c+d x) \sqrt [3]{\sec (c+d x) a+a}}{7 d (1-\sec (c+d x)) (\sec (c+d x)+1)^{2/3} \sqrt {-\frac {\sqrt [3]{\sec (c+d x)+1} \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}}}+\frac {5\ 3^{3/4} \left (1-\sqrt {3}\right ) a C \operatorname {EllipticF}\left (\arccos \left (\frac {\sqrt [3]{2}-\left (1-\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}}{\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right ) \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right ) \sqrt {\frac {(\sec (c+d x)+1)^{2/3}+\sqrt [3]{2} \sqrt [3]{\sec (c+d x)+1}+2^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}} \tan (c+d x) \sqrt [3]{\sec (c+d x) a+a}}{7\ 2^{2/3} d (1-\sec (c+d x)) (\sec (c+d x)+1)^{2/3} \sqrt {-\frac {\sqrt [3]{\sec (c+d x)+1} \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}}}+\frac {3 a C \tan (c+d x) \sqrt [3]{\sec (c+d x) a+a}}{7 d}-\frac {15 \left (1+\sqrt {3}\right ) a C \tan (c+d x) \sqrt [3]{\sec (c+d x) a+a}}{7 d (\sec (c+d x)+1)^{2/3} \left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )} \]

[In]

Int[(a + a*Sec[c + d*x])^(4/3)*(A + C*Sec[c + d*x]^2),x]

[Out]

(3*a*C*(a + a*Sec[c + d*x])^(1/3)*Tan[c + d*x])/(7*d) + (3*Sqrt[2]*a*A*AppellF1[11/6, 1/2, 1, 17/6, (1 + Sec[c
 + d*x])/2, 1 + Sec[c + d*x]]*(1 + Sec[c + d*x])*(a + a*Sec[c + d*x])^(1/3)*Tan[c + d*x])/(11*d*Sqrt[1 - Sec[c
 + d*x]]) + (3*C*(a + a*Sec[c + d*x])^(4/3)*Tan[c + d*x])/(7*d) - (15*(1 + Sqrt[3])*a*C*(a + a*Sec[c + d*x])^(
1/3)*Tan[c + d*x])/(7*d*(1 + Sec[c + d*x])^(2/3)*(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))) + (15*2^(
1/3)*3^(1/4)*a*C*EllipticE[ArcCos[(2^(1/3) - (1 - Sqrt[3])*(1 + Sec[c + d*x])^(1/3))/(2^(1/3) - (1 + Sqrt[3])*
(1 + Sec[c + d*x])^(1/3))], (2 + Sqrt[3])/4]*(a + a*Sec[c + d*x])^(1/3)*(2^(1/3) - (1 + Sec[c + d*x])^(1/3))*S
qrt[(2^(2/3) + 2^(1/3)*(1 + Sec[c + d*x])^(1/3) + (1 + Sec[c + d*x])^(2/3))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[
c + d*x])^(1/3))^2]*Tan[c + d*x])/(7*d*(1 - Sec[c + d*x])*(1 + Sec[c + d*x])^(2/3)*Sqrt[-(((1 + Sec[c + d*x])^
(1/3)*(2^(1/3) - (1 + Sec[c + d*x])^(1/3)))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))^2)]) + (5*3^(3/
4)*(1 - Sqrt[3])*a*C*EllipticF[ArcCos[(2^(1/3) - (1 - Sqrt[3])*(1 + Sec[c + d*x])^(1/3))/(2^(1/3) - (1 + Sqrt[
3])*(1 + Sec[c + d*x])^(1/3))], (2 + Sqrt[3])/4]*(a + a*Sec[c + d*x])^(1/3)*(2^(1/3) - (1 + Sec[c + d*x])^(1/3
))*Sqrt[(2^(2/3) + 2^(1/3)*(1 + Sec[c + d*x])^(1/3) + (1 + Sec[c + d*x])^(2/3))/(2^(1/3) - (1 + Sqrt[3])*(1 +
Sec[c + d*x])^(1/3))^2]*Tan[c + d*x])/(7*2^(2/3)*d*(1 - Sec[c + d*x])*(1 + Sec[c + d*x])^(2/3)*Sqrt[-(((1 + Se
c[c + d*x])^(1/3)*(2^(1/3) - (1 + Sec[c + d*x])^(1/3)))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))^2)]
)

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 141

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[(b*e - a*f
)^p*((a + b*x)^(m + 1)/(b^(p + 1)*(m + 1)*(b/(b*c - a*d))^n))*AppellF1[m + 1, -n, -p, m + 2, (-d)*((a + b*x)/(
b*c - a*d)), (-f)*((a + b*x)/(b*e - a*f))], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] &&  !IntegerQ[m] &&  !Int
egerQ[n] && IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !(GtQ[d/(d*a - c*b), 0] && SimplerQ[c + d*x, a + b*x])

Rule 231

Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[x*(s +
 r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[r*x^2*(
(s + r*x^2)/(s + (1 + Sqrt[3])*r*x^2)^2)]))*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r*x^
2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b}, x]

Rule 314

Int[(x_)^4/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(
Sqrt[3] - 1)*(s^2/(2*r^2)), Int[1/Sqrt[a + b*x^6], x], x] - Dist[1/(2*r^2), Int[((Sqrt[3] - 1)*s^2 - 2*r^2*x^4
)/Sqrt[a + b*x^6], x], x]] /; FreeQ[{a, b}, x]

Rule 1895

Int[((c_) + (d_.)*(x_)^4)/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/
a, 3]]}, Simp[(1 + Sqrt[3])*d*s^3*x*(Sqrt[a + b*x^6]/(2*a*r^2*(s + (1 + Sqrt[3])*r*x^2))), x] - Simp[3^(1/4)*d
*s*x*(s + r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2*r^2*Sqrt[(r*x^2*(s + r*x^2))/
(s + (1 + Sqrt[3])*r*x^2)^2]*Sqrt[a + b*x^6]))*EllipticE[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r
*x^2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[2*Rt[b/a, 3]^2*c - (1 - Sqrt[3])*d, 0]

Rule 3863

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[a^n*(Cot[c + d*x]/(d*Sqrt[1 + Csc[c + d*x]]
*Sqrt[1 - Csc[c + d*x]])), Subst[Int[(1 + b*(x/a))^(n - 1/2)/(x*Sqrt[1 - b*(x/a)]), x], x, Csc[c + d*x]], x] /
; FreeQ[{a, b, c, d, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[2*n] && GtQ[a, 0]

Rule 3864

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[a^IntPart[n]*((a + b*Csc[c + d*x])^FracPart
[n]/(1 + (b/a)*Csc[c + d*x])^FracPart[n]), Int[(1 + (b/a)*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, n}, x]
 && EqQ[a^2 - b^2, 0] &&  !IntegerQ[2*n] &&  !GtQ[a, 0]

Rule 3912

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[a^2*d
*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]])), Subst[Int[(d*x)^(n - 1)*((a + b*x)^(m -
 1/2)/Sqrt[a - b*x]), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !In
tegerQ[m] && GtQ[a, 0]

Rule 3913

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[a^Int
Part[m]*((a + b*Csc[e + f*x])^FracPart[m]/(1 + (b/a)*Csc[e + f*x])^FracPart[m]), Int[(1 + (b/a)*Csc[e + f*x])^
m*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m] &&  !GtQ
[a, 0]

Rule 4009

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Dist[c, I
nt[(a + b*Csc[e + f*x])^m, x], x] + Dist[d, Int[(a + b*Csc[e + f*x])^m*Csc[e + f*x], x], x] /; FreeQ[{a, b, c,
 d, e, f, m}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[2*m]

Rule 4140

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Simp[
(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(b*(m + 1)), Int[(a + b*Csc[e + f*x])^m*Si
mp[A*b*(m + 1) + a*C*m*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && EqQ[a^2 - b^2, 0] &&  !L
tQ[m, -2^(-1)]

Rubi steps \begin{align*} \text {integral}& = \frac {3 C (a+a \sec (c+d x))^{4/3} \tan (c+d x)}{7 d}+\frac {3 \int (a+a \sec (c+d x))^{4/3} \left (\frac {7 a A}{3}+\frac {4}{3} a C \sec (c+d x)\right ) \, dx}{7 a} \\ & = \frac {3 C (a+a \sec (c+d x))^{4/3} \tan (c+d x)}{7 d}+A \int (a+a \sec (c+d x))^{4/3} \, dx+\frac {1}{7} (4 C) \int \sec (c+d x) (a+a \sec (c+d x))^{4/3} \, dx \\ & = \frac {3 C (a+a \sec (c+d x))^{4/3} \tan (c+d x)}{7 d}+\frac {\left (a A \sqrt [3]{a+a \sec (c+d x)}\right ) \int (1+\sec (c+d x))^{4/3} \, dx}{\sqrt [3]{1+\sec (c+d x)}}+\frac {\left (4 a C \sqrt [3]{a+a \sec (c+d x)}\right ) \int \sec (c+d x) (1+\sec (c+d x))^{4/3} \, dx}{7 \sqrt [3]{1+\sec (c+d x)}} \\ & = \frac {3 C (a+a \sec (c+d x))^{4/3} \tan (c+d x)}{7 d}-\frac {\left (a A \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)\right ) \text {Subst}\left (\int \frac {(1+x)^{5/6}}{\sqrt {1-x} x} \, dx,x,\sec (c+d x)\right )}{d \sqrt {1-\sec (c+d x)} (1+\sec (c+d x))^{5/6}}-\frac {\left (4 a C \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)\right ) \text {Subst}\left (\int \frac {(1+x)^{5/6}}{\sqrt {1-x}} \, dx,x,\sec (c+d x)\right )}{7 d \sqrt {1-\sec (c+d x)} (1+\sec (c+d x))^{5/6}} \\ & = \frac {3 a C \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)}{7 d}+\frac {3 \sqrt {2} a A \operatorname {AppellF1}\left (\frac {11}{6},\frac {1}{2},1,\frac {17}{6},\frac {1}{2} (1+\sec (c+d x)),1+\sec (c+d x)\right ) (1+\sec (c+d x)) \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)}{11 d \sqrt {1-\sec (c+d x)}}+\frac {3 C (a+a \sec (c+d x))^{4/3} \tan (c+d x)}{7 d}-\frac {\left (5 a C \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x} \sqrt [6]{1+x}} \, dx,x,\sec (c+d x)\right )}{7 d \sqrt {1-\sec (c+d x)} (1+\sec (c+d x))^{5/6}} \\ & = \frac {3 a C \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)}{7 d}+\frac {3 \sqrt {2} a A \operatorname {AppellF1}\left (\frac {11}{6},\frac {1}{2},1,\frac {17}{6},\frac {1}{2} (1+\sec (c+d x)),1+\sec (c+d x)\right ) (1+\sec (c+d x)) \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)}{11 d \sqrt {1-\sec (c+d x)}}+\frac {3 C (a+a \sec (c+d x))^{4/3} \tan (c+d x)}{7 d}-\frac {\left (30 a C \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)\right ) \text {Subst}\left (\int \frac {x^4}{\sqrt {2-x^6}} \, dx,x,\sqrt [6]{1+\sec (c+d x)}\right )}{7 d \sqrt {1-\sec (c+d x)} (1+\sec (c+d x))^{5/6}} \\ & = \frac {3 a C \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)}{7 d}+\frac {3 \sqrt {2} a A \operatorname {AppellF1}\left (\frac {11}{6},\frac {1}{2},1,\frac {17}{6},\frac {1}{2} (1+\sec (c+d x)),1+\sec (c+d x)\right ) (1+\sec (c+d x)) \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)}{11 d \sqrt {1-\sec (c+d x)}}+\frac {3 C (a+a \sec (c+d x))^{4/3} \tan (c+d x)}{7 d}+\frac {\left (15 a C \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)\right ) \text {Subst}\left (\int \frac {2^{2/3} \left (-1+\sqrt {3}\right )-2 x^4}{\sqrt {2-x^6}} \, dx,x,\sqrt [6]{1+\sec (c+d x)}\right )}{7 d \sqrt {1-\sec (c+d x)} (1+\sec (c+d x))^{5/6}}+\frac {\left (15\ 2^{2/3} \left (1-\sqrt {3}\right ) a C \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {2-x^6}} \, dx,x,\sqrt [6]{1+\sec (c+d x)}\right )}{7 d \sqrt {1-\sec (c+d x)} (1+\sec (c+d x))^{5/6}} \\ & = \frac {3 a C \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)}{7 d}+\frac {3 \sqrt {2} a A \operatorname {AppellF1}\left (\frac {11}{6},\frac {1}{2},1,\frac {17}{6},\frac {1}{2} (1+\sec (c+d x)),1+\sec (c+d x)\right ) (1+\sec (c+d x)) \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)}{11 d \sqrt {1-\sec (c+d x)}}+\frac {3 C (a+a \sec (c+d x))^{4/3} \tan (c+d x)}{7 d}-\frac {15 \left (1+\sqrt {3}\right ) a C \sqrt [3]{a+a \sec (c+d x)} \tan (c+d x)}{7 d (1+\sec (c+d x))^{2/3} \left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )}+\frac {15 \sqrt [3]{2} \sqrt [4]{3} a C E\left (\arccos \left (\frac {\sqrt [3]{2}-\left (1-\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}{\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right ) \sqrt [3]{a+a \sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right ) \sqrt {\frac {2^{2/3}+\sqrt [3]{2} \sqrt [3]{1+\sec (c+d x)}+(1+\sec (c+d x))^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}} \tan (c+d x)}{7 d (1-\sec (c+d x)) (1+\sec (c+d x))^{2/3} \sqrt {-\frac {\sqrt [3]{1+\sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}}}+\frac {5\ 3^{3/4} \left (1-\sqrt {3}\right ) a C \operatorname {EllipticF}\left (\arccos \left (\frac {\sqrt [3]{2}-\left (1-\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}{\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right ) \sqrt [3]{a+a \sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right ) \sqrt {\frac {2^{2/3}+\sqrt [3]{2} \sqrt [3]{1+\sec (c+d x)}+(1+\sec (c+d x))^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}} \tan (c+d x)}{7\ 2^{2/3} d (1-\sec (c+d x)) (1+\sec (c+d x))^{2/3} \sqrt {-\frac {\sqrt [3]{1+\sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt {3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}}} \\ \end{align*}

Mathematica [F]

\[ \int (a+a \sec (c+d x))^{4/3} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int (a+a \sec (c+d x))^{4/3} \left (A+C \sec ^2(c+d x)\right ) \, dx \]

[In]

Integrate[(a + a*Sec[c + d*x])^(4/3)*(A + C*Sec[c + d*x]^2),x]

[Out]

Integrate[(a + a*Sec[c + d*x])^(4/3)*(A + C*Sec[c + d*x]^2), x]

Maple [F]

\[\int \left (a +a \sec \left (d x +c \right )\right )^{\frac {4}{3}} \left (A +C \sec \left (d x +c \right )^{2}\right )d x\]

[In]

int((a+a*sec(d*x+c))^(4/3)*(A+C*sec(d*x+c)^2),x)

[Out]

int((a+a*sec(d*x+c))^(4/3)*(A+C*sec(d*x+c)^2),x)

Fricas [F(-1)]

Timed out. \[ \int (a+a \sec (c+d x))^{4/3} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

[In]

integrate((a+a*sec(d*x+c))^(4/3)*(A+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int (a+a \sec (c+d x))^{4/3} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {4}{3}} \left (A + C \sec ^{2}{\left (c + d x \right )}\right )\, dx \]

[In]

integrate((a+a*sec(d*x+c))**(4/3)*(A+C*sec(d*x+c)**2),x)

[Out]

Integral((a*(sec(c + d*x) + 1))**(4/3)*(A + C*sec(c + d*x)**2), x)

Maxima [F]

\[ \int (a+a \sec (c+d x))^{4/3} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {4}{3}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^(4/3)*(A+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^(4/3), x)

Giac [F]

\[ \int (a+a \sec (c+d x))^{4/3} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {4}{3}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^(4/3)*(A+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^(4/3), x)

Mupad [F(-1)]

Timed out. \[ \int (a+a \sec (c+d x))^{4/3} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{4/3} \,d x \]

[In]

int((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(4/3),x)

[Out]

int((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(4/3), x)